
Altix Tips

Samson Cheung

Cheung@nas.nasa.gov

Topics

• The Columbia

• Memory issues

• Unsupported compiler flags

The Columbia

• Intel Itanium 2 Rev 5 processor, 1.5GHz
• Front-end (columbia): 64 CPUs
• 20 boxes, each has ~1000 GB:

– Columbia1, …, Columbia20: 512 CPUs
– Columbia20 has 32 CPUs with 1.6GHz

• Columbia1-12
– 4 IX-Bricks, 128 C-Bricks, 112 R-Bricks

• Columbia13-20
– 4 IX-Bricks, 64 C-Bricks, 48 R-Bricks

Memory Issues

First Touch Policy

• By default, all pages are allocated with a “first
touch” policy

• Always initialize data with the “first-touch” policy
with multiple processors in a parallel loop
– Data is distributed naturally

– Each processor has local data

– Minimal data exchange between nodes

– Page edge effects

dplace

• dplace binds processes to specified CPUs in
round-robin fashion; once pinned, they do not
migrate (a la IRIX _DSM_MUSTRUN).
– c <cpulist> CPU numbers are logical numbers relative to

current cpumemset.
– x <mask> A bitmask for specifying threads to skip

placing. [See following examples.]
– s <count> Skip placement of the first <count> threads.

Use –s1 to skip placing the shepherd thread in MPI programs.
– q Displays static load information. dplace

without arguments will avoid loaded cpus.
– E Exact placement

I only know …

• ProPack 2.4 OpenMP: dplace –x6 …

• ProPack 3 OpenMP: dplace –x2 … (?)

• ‘setenv LD_ASSUME_KERNEL 2.4.19’ in
ProPack 3 to revert to old Linuxthreads
behavior

Memory Usage

• dlook
– identifies distribution of application memory

pages across nodes (dlook my.exe)

• /proc/discontig file
– be aware of per-node memory availability

– cat /proc/discontig

– In I/O intensive environment, Linux gladly eats
up available memory for I/O buffer cache

Fortran Memory Management

• Intel® 7.1 Fortran runtime libraries have their own
memory management routines for handling
automatic arrays, allocatable arrays, etc.

• At least some of these rely on mmap()/ munmap()
• Can lead to poor scaling of parallel codes
• Workarounds:

– Compile with –stack_temps flag
– Use Cray pointers, which are malloc-based

• These issues are resolved in 8.0 compilers

Bcopy/Memcpy on Altix™

• Standard glibc bcopy/memcpy routines are slow

• MPT has optimized bcopy routine, fastbcopy
– For best performance, source and destination addresses

should be word-aligned and transfer length should be a
multiple of 8 bytes

• For non-MPI codes can access fast bcopy routine
via SCSL’s __scsl_bcopy (not tried)

Unsupported Flags

Unsupported Compiler Flags

• Categories
– mP2OPT_*: HLO (high-level optimizer), loop nest optimization,

prefetching, profile-guided optimization, etc.
– -mP3OPT_*: Code generation, pipelining, load latencies, etc.
– -mPAROPT_*: OpenMP and automatic parallelization controls
– -mIPOPT_*: Interprocedural optimization knobs

• floating point / Integer loads latency (6-11 cycles)
– For increasing latency, use
-mP3OPT_ecg_mm_fp_ld_latency=##
(-mP3OPT_ecg_mm_int_ld_latency=## for integer loads)

– MIPSpro analogue is -CG:ld_latency=##

Prefetching

• -mP2OPT_hlo_prefetch=F

– Compiler sometimes prefetches too aggressively

– Cache-contained data doesn’t require prefetching;
lfetch operations consume instruction issue slots

– If –O2 gives better performance than –O3, it may be
due to this (prefetching is enabled only at –O3)

• MIPSpro equivalent: -LNO:prefetch=OFF

Prefetching (Conts.)

• -mP2OPT_hlo_pref_hint=#
– 0: no prefetch hint (temporal locality at all cache levels, very bad

for floating point data)

– 1: nt1 hint (no temporal locality at cache level 1)

– 2: nt2 hint (no temporal locality at level 2)

– 3: nta hint (no temporal locality at any level)

• Hint applies to all prefetch instructions throughout file -- if
source code can be modified, may be better to insert
mm_prefetch() calls (never tried)

• MIPSpro analogue: -LNO:pf1=[ON|OFF]:pf2=[ON:OFF]

Prefetching (Conts.)

• -mP2OPT_hlo_level=##

– -1: HLO code generation without optimization

– 0: disable HLO and SWP

– 1: perform all HLO optimizations (default)

– 2: prefetch only

• using -mP2OPT_hlo_level=2

• No single equivalent MIPSpro flag
(-LNO:fission=OFF:fusion=OFF:blocking=OFF:…)

Loop interchange and jamming

• Check -opt_report output for information on
loops that the compiler interchanges

• Disable loop interchange using
– -mP2OPT_hlo_linear_trans=F

• MIPSpro equivalent: -LNO:interchange=OFF
• 2D loop unroll and jam is disabled by default (in

version 7, don’t know in current 8.0 releases)
• Enable 2D loop unroll and jam with

– -mP2OPT_hlo_loop_unroll_jam=T

Linpack Performance Report

• Flags used in Linpack 100 score (1659 Mflops):
• Flags used: -O3 -ipo -fno-alias
-mP2OPT_hlo_loadpair=F
-mP2OPT_hlo_prefetch=F
-mP2OPT_hlo_loop_unroll_factor=2
-mP3OPT_ecg_mm_fp_ld_latency=8
– -mP2OPT_hlo_loadpair=F: disable generation of

floating-point load pair instructions
– -mP2OPT_hlo_loop_unroll_factor=2: unroll

all loops by 2
• Without hidden flags performance drops by 33%

Profiling Tools

Some of Them

• pfmon

• profile.pl

• histx

• lipfpm

lipfpm

• For help: lipfpm –h
– Can specify up to 4 events at a time

– -f is required for MPI codes

• Collective events (-c bw)
– counters associated with (read) bandwidth

• lipfpm –c bw my.exe

profile.pl

• For help: man profile.pl

• A perl script uses pfmon

• mpirun –np 8 profile.pl –QS -s1 -c0-7
./my.exe

• Flags -c, -s, -n, -p are same as dplace

